### **Quality Control**

Of Roasting and Packaging Coffee

Presented by: Sam Schank Hawaii Coffee Company July 20, 2013

### Green Coffee Procurement

- Receipt of samples
  - Assign internal reference number
  - Log receipt data
- Sample roasting
- Cupping
- Cupping log
  - Sample evaluation notes/approvals, etc.
- Sample retention





### Roasting

- Determination of Roast Profile
- Roast color degree of roast
- Water Quenching/Cooling
- Roast batch control
- Inventory control

### Roast Profile

- Impact of length of roast on flavor
- Measuring and controlling roast color
  - SCAA color discs
  - Agtron Color Meter
- Other considerations
  - How will the coffee will be brewed?
  - Is the coffee part of a blend?
  - Will the coffee be flavored?

### Measuring Roast Color

SCAA Color Discs



Agtron Color Meter



### Why Water Quench?

- Larger roast machines have more exothermic energy to dissipate at the end of the roast.
- Better control at the end of roast.
- Enhances quick cooling of the coffee and retention of flavor.
- Helps seal hydroscopic surface of the beans for better flavor retention.
- Assists in more uniform grinding of the beans.

# Controlling Moisture in Finished Roasts

- Only enough water should be used to enhance the quality of the coffee.
- Too much water can negatively affect flavor.
- Set a standard for optimum moisture levels:
  - Cup to determine best level of quench
  - Regularly test roast samples to ensure optimum levels
    - Moisture analysis equipment (% moisture by weight)
    - Brewing and cupping

## Moisture Analysis Scale



### Controlling the Roasting Process

- Roast Orders (initiating the roasting process)
  - Details information for roast machine operators
    - Date of roast
    - Roasting equipment used
  - Assigns a unique batch number for each roast
  - Green coffee specified by type
  - Batch size (no. of pounds per roast)
  - Purpose of roast (how the coffee will be packed)

# Controlling the Roasting Process (cont.)

- Completed Roast Orders (as record of completed roasts)
  - Roast machine operator's name
  - Record of actual roast times
  - Finished roast weights (for calculating shrinkage)
  - Agtron scores
  - Used to balance/reconcile green coffee inventory and account for inventory of roasted coffee

# Controlling the Roasting Process (cont.)

- Issuance of Roast "Tags"
  - Each completed roast gets a tag which follows it through production to finished product
  - Roast Tag information:
    - Roast machine operator
    - Roast batch number (from Roast Order)
    - Roast batch weights and Agtron scores
    - Grind information (WB, AD, URN, etc.)
    - Flavor information (for flavored coffees) batch control
      - Flavor used and lot number
      - Quantity used and % total weight
    - Intended purpose for batch (what product will be packed and on what machine? – should match Roast Order)

### Controlling the Grinding Process

- Standards for grinds (Auto Drip vs. French Press, Urn, Fine Grind, Turkish, etc.)
- Methods of grind analysis:
  - Sieve analysis "Ro-Tap" machine
  - TDS (Total Dissolved Solids) in brewed coffee
  - Coffee brewing hydrometer
  - Tasting finished brews as related to:
    - Ratio of coffee grounds to water (strength of coffee) vs.
    - Extraction relative to grind particle size
    - Other factors:
      - Water quality/condition
      - Water temperature

### **Grinding Coffee**

- Whole Bean vs. Ground
- Types of grinders
  - Disc-style



Roller-style



### Ro-Tap Sieve Analyzer



### Ro-Tap Screens

#### Regular/Drip Grinds (800 micron average)

| Tyler | U.S. |
|-------|------|
| 10    | 12   |
| 14    | 16   |
| 20    | 20   |
| 28    | 30   |
| Pan   | Pan  |



#### Fine Grinds (600 micron average)

| Tyler | U.S. |
|-------|------|
| 20    | 20   |
| 28    | 30   |
| 35    | 40   |
| 48    | 50   |
| 60    | 60   |
| Pan   | Pan  |

### **TDS Measurement**





### Coffee Brewing Control Chart



### Packaging

- Packaging equipment
  - Manual
  - Automatic (VFFS)
  - Packaging scales
  - Check weighing equipment







### Vacuum and Nitrogen Flush

Vacuum with nitrogen gas flush





Nitrogen flush flow control (in SCFM)

## **Bag Sealing Equipment**







**Continuous Vertical Sealer** 

Impulse Sealer w/ Vacuum

GL9 Vacuum Sealer w/ Carousels

### **Packaging Components**

- Packaging materials flexible packaging
  - Bags
  - Packaging film
  - Degassing valves (enables packaging of freshly

roasted coffee)

Labels (or in-line printers)







### **Packaging Control**

- Bill of Materials (BOM)
  - Facilitates planning and control of materials
  - Gives specific instructions for packaging crew
  - Correct components
    - Correct coffee/grind/flavor
    - Correct bag/film
    - Correct label/print/UPC/date
    - Correct box and label for master carton

### Packaging Control (cont.)

- Quality Control Log Sheet Checklist for critical components of the package
  - All seals intact
    - Inspection of all seal areas (top, bottom, fin seal)
    - Leak test tank for detection of micro leaks or weak seal areas
  - Degassing valve intact, fused to bag and functional
  - Proper location of labels and print impressions
  - UPC scans correctly scan log located on computer

### **Leak Detection Tank**



### Packaging Control (cont.)

- Quality Control Log Sheet (cont.)
  - Test weights recorded throughout run
    - Correct bag tare
    - Correct net weight
  - Record of roast batch packed (copied from Roast Tag)
  - Nitrogen gas flow rates for gas flushing
  - Oxygen head space analysis

## Oxygen Headspace Analyzer



### Conclusion

- Aspects of quality in a product have to be defined and identified
  - Some quality elements are more subject to measurement and control
  - Some quality elements, like flavor, need to be evaluated organoleptically through continuously tasting your product
    - From the original receipt of green coffee through the roasting process, and
    - Finally, to the finished package of coffee
- Once quality elements are determined, they must be built in through the production process